Full Ext-exceptional collections for acyclic quivers

Takumi Otani

Osaka university

December 1, 2022

1 Introduction

- Pearts of bounded t-structures and simple tiltings
 - A heart of a bounded *t*-structure
 - Simple tiltings
- Full exceptional collections
 - Definition and properties
 - Main results
- Application : stability conditions
 - Bridgeland stability condition
 - σ -exceptional collection

Decompositions of triangulated categories

Let $\mathcal D$ be a $\mathbb C\text{-linear}$ triangulated category of finite type.

- \exists "decompositions" of the triangulated category $\mathcal{D}.$
 - A heart (of a bounded *t*-structure).
 - A full (Ext-)exceptional collection.

Macrì constructed a correspondence

 $\begin{array}{ccc} \{ \text{full Ext-exceptional collection} \} & \longrightarrow & \{ \text{heart of a bounded } t\text{-structure} \} \\ \mathcal{E} & \mapsto & \langle \mathcal{E} \rangle_{\text{ex}} \end{array}$

Here $\langle \mathcal{E} \rangle_{\mathrm{ex}}$ is the extension closure of $\mathcal{E}.$

Question

When can we obtain a heart from a full Ext-exceptional collection?

Main result

Let Q be an acyclic quiver and $\mathcal{D} = \mathcal{D}^b(Q) \coloneqq \mathcal{D}^b \operatorname{mod}(\mathbb{C}Q).$

Consider the following two conditions:

- (A1) For each $i, j \in Q_0$, we have $\#\{i \to j \in Q_1\} \le 1$.
- (A2) Let $i, j, k \in Q_0$ such that i < j < k. If there are arrows from i to j and from j to k, then there are no arrows from i to k.

Theorem 1 (O).

Let Q be an acyclic quiver satisfying (A1) (A2), and A a heart in $\mathcal{D}^b(Q)$. Assume that A is obtained from $mod(\mathbb{C}Q)$ by iterated simple tilts. Then, there exists a full Ext-exceptional collection $\mathcal{E} = (E_1, \ldots, E_\mu)$ such that $\mathcal{A} = \langle \mathcal{E} \rangle_{ex}$ and $Sim \mathcal{A} = \{E_1, \ldots, E_\mu\}$.

A heart of a bounded t-structure Simple tiltings

Introduction

Pearts of bounded t-structures and simple tiltings

- A heart of a bounded t-structure
- Simple tiltings
- 3 Full exceptional collections
 - Definition and properties
 - Main results
- Application : stability conditions
 - Bridgeland stability condition
 - σ -exceptional collection

A heart of a bounded *t*-structure Simple tiltings

A heart of a bounded *t*-structure

Let $\mathcal D$ be a $\mathbb C\text{-linear}$ triangulated category of finite type.

Definition 2.

A full additive subcategory $A \subset D$ is a heart (of a bounded *t*-structure) in D if it satisfies the following conditions:

- For any $E, F \in \mathcal{A}$, we have $\operatorname{Hom}_{\mathcal{D}}(E, F[p]) \cong 0$ for p < 0.
- For any nonzero object $E \in D$, there exists a sequence of integers $k_1 > k_2 > \cdots > k_n$ and a sequence of exact triangles

where $A_i \in \mathcal{A}[k_i]$ for all $i = 1, \ldots, n$.

It is known that a heart ${\mathcal A}$ in ${\mathcal D}$ has a structure of an abelian category.

Remark: A heart is usually defined as the "center" of a (bounded) t-structure. In this talk, we use an equivalent definition for simplicity.

A heart \mathcal{A} is said to be of finite length if it is Artinian and Noetherian. This is equivalent to the following property: For any nonzero object $E \in \mathcal{A}$, there exists a filtration

$$0 = F_0 \subset F_1 \subset \cdots \subset F_m = E$$

such that F_i/F_{i-1} is simple in \mathcal{A} .

Example:

Let \mathcal{A} be an abelian category \mathcal{A} . The category \mathcal{A} forms a heart of finite length in its derived category $\mathcal{D}^b(\mathcal{A})$. This is called the standard heart.

Therefore, a derived category of an Abelian category admits a heart.

Simple tiltings

Let \mathcal{A} be a heart in \mathcal{D} . Denote by $\operatorname{Sim} \mathcal{A}$ the set of isomorphism classes of simple objects in \mathcal{A} .

Simple tiltings

For $S \in \operatorname{Sim} \mathcal{A}$, define full subcategories $^{\perp}S$ and S^{\perp} by

 ${}^{\perp}S \coloneqq \{E \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(E,S) = 0\}, \quad S^{\perp} \coloneqq \{E \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(S,E) = 0\}.$

Then, we have $\mathcal{A} = \langle ^{\perp}S,S \rangle_{\mathrm{ex}} = \langle S,S^{\perp} \rangle_{\mathrm{ex}}.$

Define \mathcal{A}_{S}^{\sharp} and \mathcal{A}_{S}^{\flat} by

$$\mathcal{A}_{S}^{\sharp} \coloneqq \langle S[1], {}^{\perp}S \rangle_{\mathrm{ex}}, \quad \mathcal{A}_{S}^{\flat} \coloneqq \langle S^{\perp}, S[-1] \rangle_{\mathrm{ex}}.$$

It is known that \mathcal{A}_{S}^{\sharp} and \mathcal{A}_{S}^{\flat} are hearts in \mathcal{D} . The heart \mathcal{A}_{S}^{\sharp} (resp., \mathcal{A}_{S}^{\flat}) is called the forward simple tilt (resp., backward simple tilt).

Let Q be an acyclic quiver and \mathcal{A} a heart in $\mathcal{D} = \mathcal{D}^b(Q)$.

It is known that if \mathcal{A} is of finite length then so are \mathcal{A}_{S}^{\sharp} and \mathcal{A}_{S}^{\flat} . Moreover, if \mathcal{A} has finitely many simple objects then so are \mathcal{A}_{S}^{\sharp} and \mathcal{A}_{S}^{\flat} .

In particular, in the cases of Dynkin quivers the following result is known. A Dynkin quiver $\vec{\Delta}$ is an (acyclic) quiver whose underlying graph is one of the Dynkin diagrams.

Proposition 3 (Keller–Vossieck).

Let $\vec{\Delta}$ be a Dynkin quiver. Any heart in $\mathcal{D}^b(\vec{\Delta})$ can be obtained from $mod(\mathbb{C}\vec{\Delta})$ by iterated simple tilts.

Introduction

- 2 Hearts of bounded *t*-structures and simple tiltings
 - A heart of a bounded *t*-structure
 - Simple tiltings
- 3 Full exceptional collections
 - Definition and properties
 - Main results
- Application : stability conditions
 - Bridgeland stability condition
 - σ -exceptional collection

Definition and properties Main results

Definition

Let $\mathcal D$ be a $\mathbb C\text{-linear}$ triangulated category of finite type.

Definition 4.

1 A object $E \in \mathcal{D}$ is exceptional if

$$\operatorname{Hom}_{\mathcal{D}}(E, E[p]) \cong \begin{cases} \mathbb{C}, & p = 0, \\ 0, & p \neq 0. \end{cases}$$

a An ordered set $\mathcal{E} = (E_1, \dots, E_\mu)$ is called exceptional collection if

- E_1, \ldots, E_μ are exceptional,
- For i > j, we have $\operatorname{Hom}_{\mathcal{D}}(E_i, E_j[p]) \cong 0$ for any $p \in \mathbb{Z}$.

An exceptional collection E is full if the smallest full triangulated subcategory of D containing E is equivalent to D.

Remark: The existence of a full exceptional collection is stronger than the existence of a bonded t-structure.

Recall that in the derived category $\mathcal{D}^b(\mathcal{A})$ of an Abelian category \mathcal{A} we have

$$\operatorname{Ext}_{\mathcal{A}}^{p}(E,F) \cong \operatorname{Hom}_{\mathcal{D}^{b}(\mathcal{A})}(E,F[p]), \quad p \in \mathbb{Z}, \ E, F \in \mathcal{A}.$$

Definition 5 (Macri).

A full exceptional collection $\mathcal{E}=(E_1,\ldots,E_\mu)$ is Ext if for any i,j we have

$$\operatorname{Hom}_{\mathcal{D}}(E_i, E_j[p]) \cong 0 \quad \text{for} \quad p \leq 0.$$

If an object E is exceptional, so is its shift E[p] for some $p \in \mathbb{Z}$.

Hence, for any full exceptional collection (E_1, \ldots, E_μ) , one can choose $(p_1, \ldots, p_\mu) \in \mathbb{Z}^\mu$ so that $(E_1[p_1], \ldots, E_\mu[p_\mu])$ is full Ext-exceptional collection.

Definition and properties Main results

Example

Let $Q = (Q_0, Q_1)$ be an acyclic quiver and $Q_0 = \{1, \dots, \mu\}$. Assume that if i > j then there are no arrows from $i \in Q_0$ to $j \in Q_0$.

Denote by S_i the simple $\mathbb{C}Q$ -module with respect to the vertex $i \in Q_0$. The $\mathbb{C}Q$ -modules S_1, \ldots, S_μ are exceptional.

For $i \neq j$, we have

$$\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}Q}(S_i, S_j) = 0,$$

$$\dim_{\mathbb{C}} \operatorname{Ext}^{1}_{\mathbb{C}Q}(S_i, S_j) = \#\{i \to j \in Q_1\}.$$

and (S_1, \ldots, S_μ) forms a full Ext-exceptional collection in $\mathcal{D}^b(Q)$.

Definition and properties Main results

Known result

Proposition 6 (Macri).

Let $\mathcal{E} = (E_1, \ldots, E_{\mu})$ be a full Ext-exceptional collection. The extension closure $\langle \mathcal{E} \rangle_{ex} \subset \mathcal{D}$ is a heart of finite length such that $\operatorname{Sim} \langle \mathcal{E} \rangle_{ex} = \{E_1, \ldots, E_{\mu}\}.$

$$\begin{array}{ccc} \{ \mathsf{full} \ \mathsf{Ext-exc.} \ \mathsf{coll.} \} & \longrightarrow & \{ \mathsf{heart} \ \mathsf{of} \ \mathsf{finite} \ \mathsf{length} \} \\ \mathcal{E} & \mapsto & \langle \mathcal{E} \rangle_{\mathrm{ex}} \end{array}$$

Question

When can we obtain a heart from a full Ext-exceptional collection? :

$$\begin{array}{ccc} \{ \text{heart of finite length} \} & \longrightarrow & \{ \text{full Ext-exc. coll.} \} \\ \mathcal{A} & \mapsto & \exists ? \mathcal{E} \end{array}$$

such that $\langle \mathcal{E} \rangle_{ex} \cong \mathcal{A}$.

Definition and properties Main results

Main results

Let Q be an acyclic quiver and $Q_0 = \{1, \dots, \mu\}$.

We introduce the two conditions:

- (A1) For each $i, j \in Q_0$, we have $\#\{i \rightarrow j \in Q_1\} \leq 1$.
- (A2) Let $i, j, k = 1, ..., \mu$ such that i < j < k. If there are arrows from i to j and from j to k, then there are no arrows from i to k.

Examples:

- Dynkin quivers $\vec{\Delta}$.
- Extended Dynkin quivers except for $A_{1,1}^{(1)}$ and $A_{1,2}^{(1)}$.
- Star quivers.

Theorem 7 (O).

Let Q be an acyclic quiver satisfying (A1) (A2), and A a heart in $\mathcal{D}^b(Q)$. Assume that A is obtained from $mod(\mathbb{C}Q)$ by iterated simple tilts. Then, there exists a full Ext-exceptional collection $\mathcal{E} = (E_1, \ldots, E_\mu)$ such that $A = \langle \mathcal{E} \rangle_{ex}$ and $Sim \mathcal{A} = \{E_1, \ldots, E_\mu\}$.

In particular, in the Dynkin cases we have the following

Corollary 8.

Let $\vec{\Delta}$ be a Dynkin quiver. For each heart \mathcal{A} in $\mathcal{D}^b(\vec{\Delta})$, there exists a full Ext-exceptional collection $\mathcal{E} = (E_1, \ldots, E_\mu)$ such that $\mathcal{A} = \langle \mathcal{E} \rangle_{ex}$ and $\operatorname{Sim} \mathcal{A} = \{E_1, \ldots, E_\mu\}$.

Definition and properties Main results

Sketch of proof of Theorem 7

We prove by induction on the length of simple tiltings.

(Step 1) Case of the standard heart: The full exceptional collection $\mathcal{E} = (S_1, \ldots, S_\mu)$ consisting of simple modules satisfies the statement.

(Step 2) General case: By comparing simple tilts with mutations, we show that a full Ext-exceptional collection consisting of simple objects in a given heart \mathcal{A} induces new ones consisting of simple objects in \mathcal{A}_{S}^{\sharp} and \mathcal{A}_{S}^{\flat} .

In order to prove (Step 2), we use the two condition (A1) and (A2).

Introduction

- Pearts of bounded t-structures and simple tiltings
 - A heart of a bounded *t*-structure
 - Simple tiltings
- Full exceptional collections
 - Definition and properties
 - Main results
- Application : stability conditions
 - Bridgeland stability condition
 - σ -exceptional collection

Bridgeland stability condition σ -exceptional collection

Bridgeland stability condition

Let \mathcal{A} be a heart in \mathcal{D} and $K_0(\mathcal{A})$ its Grothendieck group.

Definition 9 (Bridgeland).

Let A be a heart in D.
A stability function Z: K₀(A) → C is a group homomorphism such that for any nonzero object E ∈ A we have

$$Z(E) \in \mathbb{H}_{-} \coloneqq \{ r e^{\sqrt{-1}\pi\phi} \in \mathbb{C} \mid R > 0, \ 0 < \phi \le 1 \}.$$

2 A stability condition on \mathcal{D} is a pair $\sigma = (Z, \mathcal{A})$ consisting of

- a heart \mathcal{A} in \mathcal{D} and,
- a stability function $Z \colon K_0(\mathcal{A}) \longrightarrow \mathbb{C}$ with the "Harder–Narasimhan property" and the "support property".

Roughly speaking, a stability condition gives a phase and mass for each object and defines σ -(semi)stable objects of \mathcal{D} .

Set

$$\operatorname{Stab}(\mathcal{D}) \coloneqq \{ \text{stability condition on } \mathcal{D} \}.$$

It is known that \exists a (generalized) metric on $\operatorname{Stab}(\mathcal{D}).$

Theorem 10 (Bridgeland).

There exists a complex structure on $\operatorname{Stab}(\mathcal{D})$ of $\dim_{\mathbb{C}} = \operatorname{rank}_{\mathbb{R}} K_0(\mathcal{D})$.

 $\exists \ \mathbb{C}\text{-action on } \operatorname{Stab}(\mathcal{D}):$

$$s \cdot (Z, \mathcal{A}) := (Z', \mathcal{A}'), \quad s \in \mathbb{C}, \ (Z, \mathcal{A}) \in \operatorname{Stab}(\mathcal{D}),$$

$$\begin{array}{lll} Z'(E) &\coloneqq & e^{-\sqrt{-1}\pi s}Z(E), \quad E \in \mathcal{D}, \\ \mathcal{A}' &\coloneqq & \left\langle E \in \mathcal{D} \, \middle| \begin{array}{c} 0 < \phi \leq 1 \\ E \text{ is a semistable object of phase } \phi + \operatorname{Re}(s) \right\rangle_{\mathrm{ex}} \end{array}$$

Bridgeland stability condition σ -exceptional collection

Comments

- The notion of a stability condition on a triangulated category is a generalization of the slope stability of coherent sheaves on an algebraic curve and King's stability on modules over finite dimensional algebras.
- However, in general, the existence of a stability condition is non-trivial.
- The space of stability conditions $\operatorname{Stab}(\mathcal{D})$ is closely related to several deformation theories (Teichmüller theory, unfolding theory for singularities, A_{∞} -deformation theory, ...).
- The space of stability conditions $\operatorname{Stab}(\mathcal{D})$ plays an important role in *mirror symmetry*.

Proposition 11.

Let \mathcal{A} be a heart of finite length and $\operatorname{Sim} \mathcal{A} = \{S_1, \ldots, S_\mu\}$. There exists an isomorphism

 $\{(Z, \mathcal{A}) \in \operatorname{Stab}(\mathcal{D})\} \xrightarrow{\cong} \mathbb{H}_{-}^{\mu}, \quad (Z, \mathcal{A}) \mapsto (Z(S_1), \dots, Z(S_{\mu})).$

In particular, when \mathcal{D} admits a heart of finite length with finitely many simple objects, $\operatorname{Stab}(\mathcal{D}) \neq \emptyset$.

If a triangulated category $\ensuremath{\mathcal{D}}$ admits a full exceptional collection, we have the following

Corollary 12 (Macri).

Let $\mathcal{E} = (E_1, \ldots, E_\mu)$ be a full exceptional collection. There exists a stability conditions σ on \mathcal{D} such that E_1, \ldots, E_μ are σ -stable.

Bridgeland stability condition σ -exceptional collection

Definition 13 (Dimitrov–Katzarkov).

Let $\sigma \in \operatorname{Stab}(\mathcal{D})$ and $\mathcal{E} = (E_1, \dots, E_{\mu})$ an exceptional collection. $\mathcal{E} = (E_1, \dots, E_{\mu})$ is called σ -exceptional collection if

- E_1, \ldots, E_μ are σ -stable,
- E is Ext, and
- there exists $r \in \mathbb{R}$ such that $r < \phi(E_i) \le r+1$ for all $i = 1, \dots, \mu$.

Proposition 14 (Macrì, Dimitrov–Katzarkov).

Let Q be the ℓ -Kronecker quiver K_{ℓ} or affine $A_{1,2}^{(1)}$ quiver. For each stability condition σ on $\mathcal{D}^{b}(Q)$, there exists a full σ -exceptional collection.

Bridgeland stability condition σ -exceptional collection

Proposition 15 (O).

Let Q be an acyclic quiver satisfying (A1) (A2), and σ a stability condition on $\mathcal{D}^b(Q)$. Assume that there exists $s \in \mathbb{C}$ such that the heart \mathcal{A}' of $s \cdot \sigma = (Z', \mathcal{A}')$

is obtained from $\operatorname{mod}(\mathbb{C} Q)$ by iterated simple tilts.

Then, there exists a full σ -exceptional collection.

In the cases of Dynkin quivers, we obtain the next result.

Theorem 16.

Let $\vec{\Delta}$ be a Dynkin quiver.

For each stability condition σ on $\mathcal{D}^b(\vec{\Delta})$, there exists a full σ -exceptional collection.

We expect that the same results hold for the extended Dynkin quivers.

Thank you very much !